



### MATHEMATICS FORM 2

TAKE OUT YOUR KSSM TEXTBOOK NOW!



# 1.1 Pattern

### 1.1.1

### Learning Standard

Recognize and describe patterns of various number sets and objects based on real life situations, and hence make generalisation on patterns.

MATH F2 TEAM

PAGE 02

## 7 can.



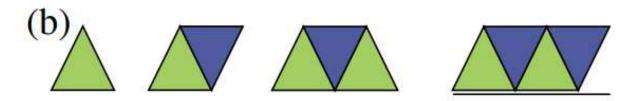
At the end of the lesson, you should be able to do all this following:



- Understand what pattern is
- Recognise Odd and Even Number Pattern
  - Recognise Pascal's Triangle
  - Recognize Fibonacci Numbers

### APATTERN IS?

Patterns are list of numbers or objects arranged based on a rule or design.


### EXAMPLE 1

Draw the next object. State its pattern.

(a) • • •

#### Solution:

Pattern: Add two dots to the previous object.



Pattern: Add a triangle to the previous object.

### EXAMPLE

Determine the patterns for the following.

(a) 
$$-10, -4, 2, 8, \dots$$

(e) 
$$1, \frac{3}{2}, 2, \frac{5}{2}, \dots$$

(b) 
$$17, 7, -3, -13, \dots$$

(f) 
$$-2.3, -2.6, -2.9, -3.2, \dots$$

#### Solution:

Pattern: Add 6 to the previous number.

Pattern: Multiply the previous number by 3.

(e) 
$$1, \frac{3}{2}, 2, \frac{5}{2}, \dots$$
  
 $+\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ 

Pattern: Add  $\frac{1}{2}$  to the previous number.

Pattern: Subtract 10 from the previous number.

Pattern: Divide the previous number by 3.

Pattern: Subtract 0.3 from the previous number.

### Even and Odd numbers

## EXAMPLE 3

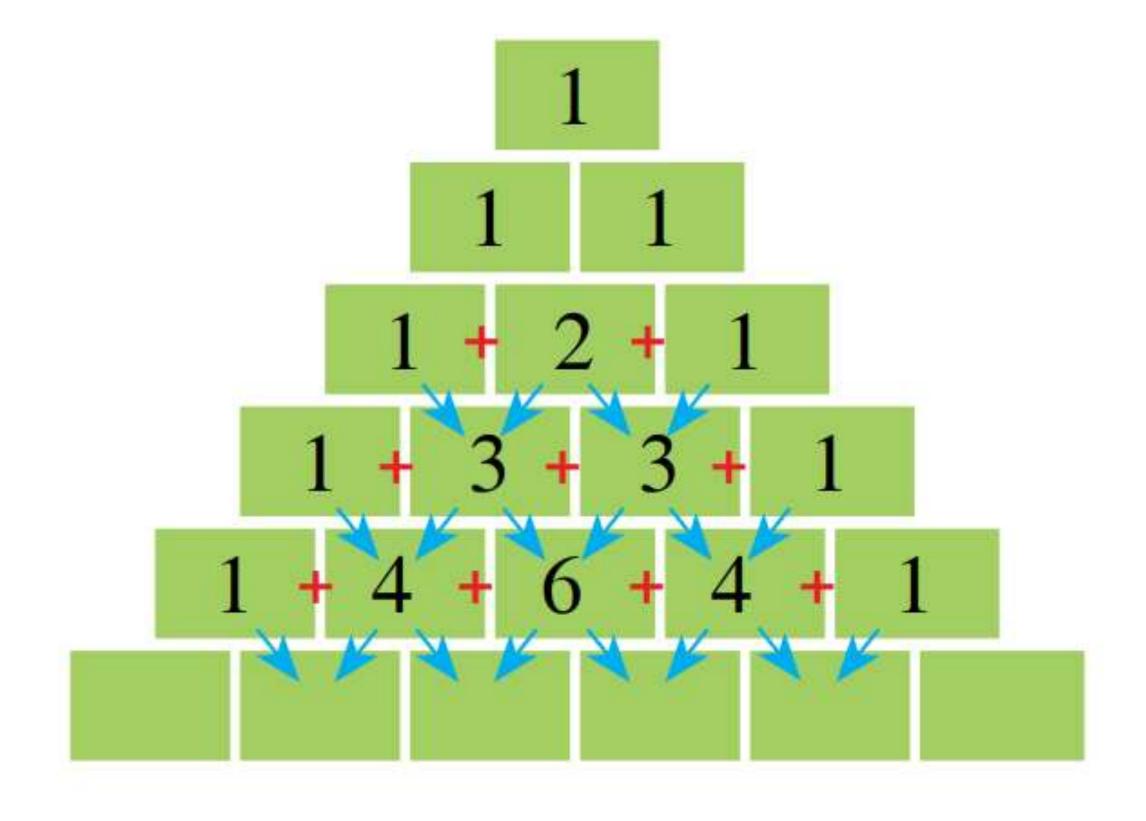
Given a series of numbers 7, 12, 17, 22, 27, ..., 67. Identify and state the pattern for the sequence of

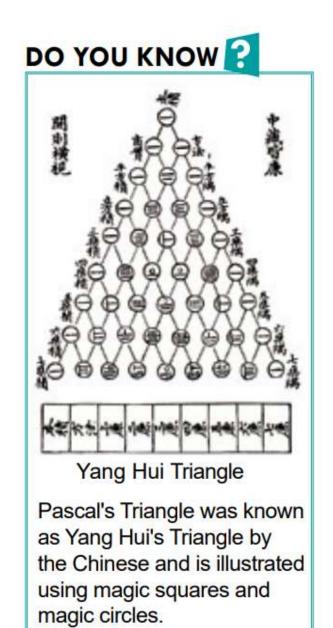
(i) odd numbers (ii) even numbers

#### Solution:

7, 12, 17, 22, 27, 32, 37, 42, 47, 52, 57, 62, 67

(i) **Odd numbers:** 7, 17, 27, 37, 47, 57 and 67


These odd numbers were obtained by adding 10 to the previous number.


(ii) **Even numbers:** 12, 22, 32, 42, 52 and 62



These even numbers were obtained by adding 10 to the previous number.

### Pascal's Triangle





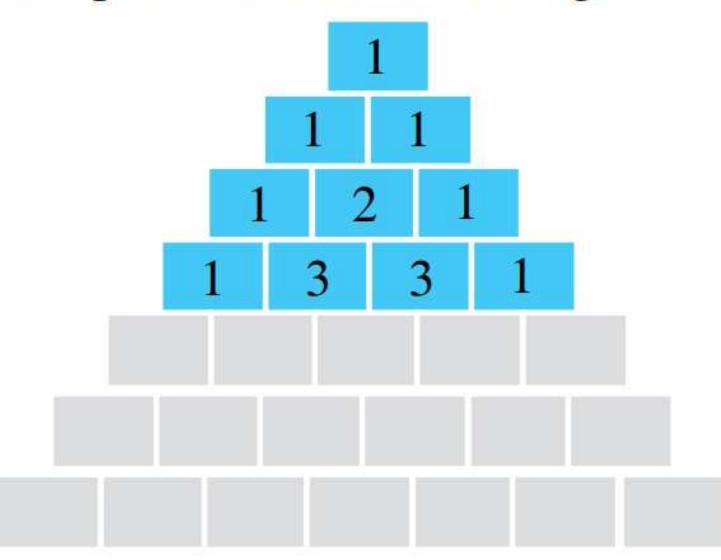
Method 1 1 Method 2 1

 1
 2
 1
 1
 2

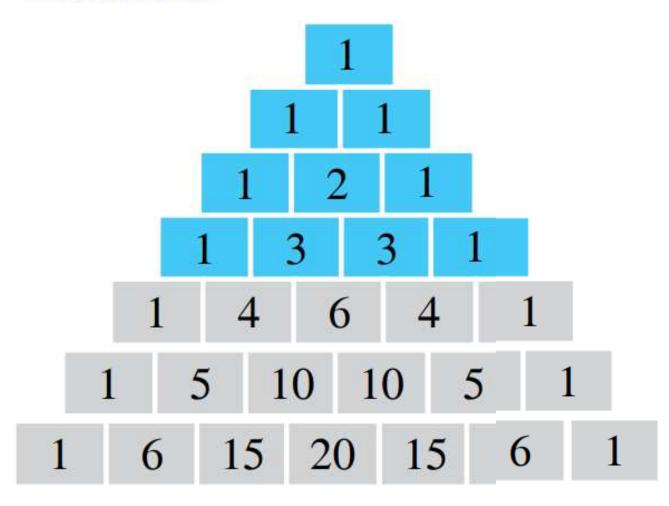
 1
 3
 3
 1
 1
 3

1 4 6 4 1 1 4 6 4 1

Sequence: 1, 2, 3, 4, ...

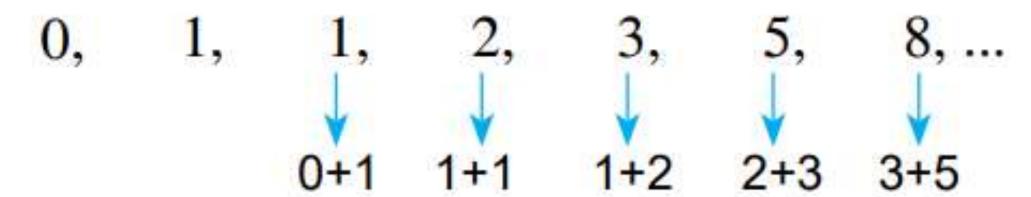

Pattern: Add 1

Sequence: 1, 3, 6, ...


Pattern: Add 2, 3, 4, ...

### EXAMPLE 4

Complete the Pascal's Triangle below.




### Solution:



### Fibonacci Numbers

Fibonacci Numbers are a pattern of numbers in a sequence.



This sequence starts with 0, 1, 1 and the next term is obtained by adding the previous two terms.

Example:

Complete the number sequence below.

### Solution:



(b) 
$$1, 3, \lfloor \frac{4}{2} \rfloor, \lfloor \frac{7}{2} \rfloor, 11, \dots$$

# 1.2 Sequences

1.2.1

Learning Standard

Explain the meaning of sequence.

1.2.2

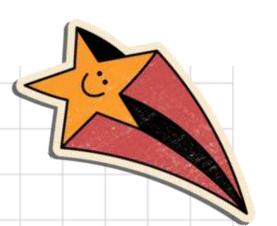
Learning Standard

Identify and describe the pattern of a sequence, and hence complete and extend the sequence.

**PAGE 26** 

# 1.2 Seguences

### IGCSE


Learning Standard

Continue a number sequence or pattern

## g can...



At the end of the lesson, you should be able to do all this following:



- Understand what sequence is
- Determine whether a set of numbers is a sequence
- Complete number sequences
- Complete number sequences based on given pattern

## ASEQUENCE IS?

Sequence is a set of numbers or objects arranged according to a certain pattern.

Determine whether each set of numbers is a sequence

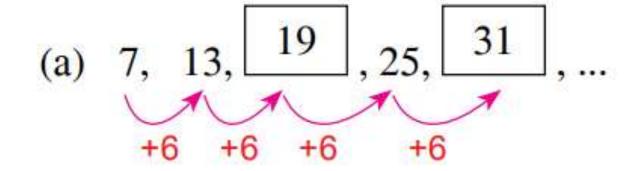
(a) 
$$-10, -6, -2, 2, 6, \dots$$

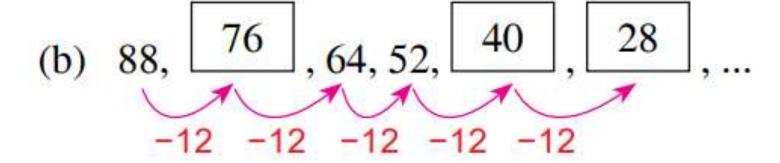
(b)  $4, 5, -7, 10, -14, \dots$ 

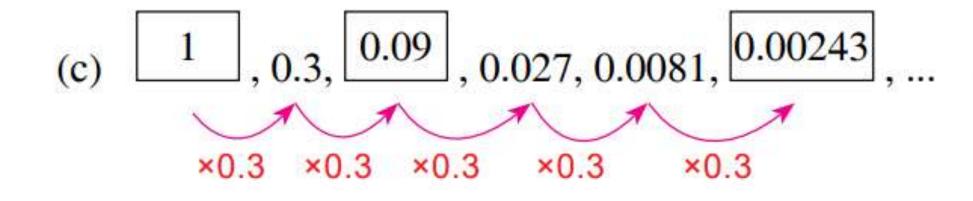
Solution:

(a) -10, -6, -2, 2, 6, ... +4 +4 +4 +4

Pattern: Add 4
Therefore, the set of numbers is a sequence.


(b) 4, 5, -7, 10, -14, .. +1 -12 +17 -24


> Pattern: None Therefore, the set of numbers is not a sequence.


Complete the number sequences below.

(d) 
$$, \frac{1}{3}, \frac{4}{6},$$
, ...

### Solution:







(d) 
$$\begin{bmatrix} -\frac{1}{3} \\ +\frac{1}{3} \\ +\frac{1}{3} \\ \end{bmatrix}$$
,  $\begin{bmatrix} 0 \\ +\frac{1}{3} \\ +\frac{1}{3} \\ \end{bmatrix}$ ,  $\begin{bmatrix} \frac{1}{3} \\ +\frac{1}{3} \\ \end{bmatrix}$ ,  $\begin{bmatrix} \frac{1}{3} \\ +\frac{1}{3} \\ \end{bmatrix}$ ,  $\begin{bmatrix} \frac{1}{3} \\ +\frac{1}{3} \\ \end{bmatrix}$ 

Complete the number sequences below based on the given pattern.

(a) Subtract 4 from the previous number.

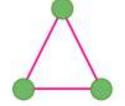
(b) Multiply the previous number by 3.

(c) Subtract 8 from the previous number.

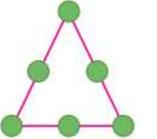
(d) Divide the previous number by 5.

#### Solution:

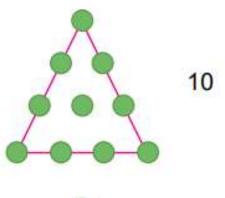
- (a) 92, 88, 84, 80, 76, ...
- (b) 21, 63, 189, 567, 1 701, ...
- (c) 13.3, 5.3, -2.7, -10.7, -18.7, ...
- (d) 80, 16, 3.2, 0.64, 0.128, ...


### DO YOU KNOW

Triangular numbers are numbers represented by dots to make an equilateral triangle.


1, 3, 6, 10, 15, 21, 28, 36, ...




1



3



6



15

# 1.3 Pattern & Sequences

1.3.1

Learning Standard

Make generalisation about the pattern of a sequence using numbers, words and algebraic expressions.

1.3.2

Learning Standard

Determine specific terms of a sequence

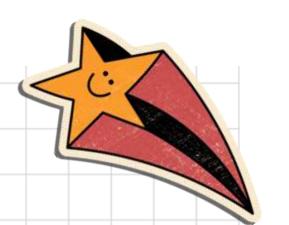
1.3.3

Learning Standard

Solve problems involving sequences.

# 1.2 Seguences

### IGCSE


Learning Standard

Continue a number sequence or pattern

## 7 can...



At the end of the lesson, you should be able to do all this following:



- Describe the pattern of a number sequence using
  - Numbers
  - Words
  - Algebraic expressions
- Finding the nth term of a sequence
- Solving problems

Describe the pattern for the number sequence 1, 9, 17, 25, 33, ... by using numbers, words and algebraic expressions.

### Solution:

### (i) Numbers

Therefore, the pattern is + 8.

### (ii) Words

Therefore, the pattern for the above sequence is add 8 to the previous number.

### (iii) Algebraic expressions

$$1 = 1 + 8(0)$$

$$9 = 1 + 8(1)$$

$$17 = 1 + 8(2)$$

$$25 = 1 + 8(3)$$

$$33 = 1 + 8 (4)$$

Therefore, the pattern for the number sequence can be expressed as 1 + 8n where,  $n = 0, 1, 2, 3, 4, \dots$ 



### 1.3.2 Terms of a sequence

The  $n^{th}$  term in a number sequence and is written as  $T_n$  whereby T is the term and n is the position of the term.

$$T_n = n^{th}$$
 term

For example,

From the sequence above...

$$T_1 = 4,$$
  
 $T_2 = 8,$   
 $T_3 = 12,$   
 $T_4 = 16, ...$ 

### DO YOU KNOW



The queen bee lays eggs in its nest which has a hexagonal pattern.

State the 5th term for the following number sequence.

Step 1: Determine the pattern for the number sequence.

Number pattern: Add 8 to the previous number.

Step 2: List down the first 5 terms as shown below.

$$T_1 = 2$$
  $T_4 = 26$   
 $T_2 = 10$   $T_5 = 34$   
 $T_3 = 18$ 

Hence, the 5<sup>th</sup> term is 34.

## EXAMPLE 11

Given the number sequence 65, 60, 55, 50, ... Determine which term in the number sequence is 40.

### Solution:

### Step 1:

65, 60, 55, 50, ...



Pattern: Subtract 5 from the previous number.

### Step 2:

$$T_1 = 65$$
  $T_4 = 50$ 

$$T_2 = 60$$
  $T_5 = 45$ 

$$T_3 = 55$$
  $T_6 = 40$ 

Hence, 40 is the 6th term.



I hope you can get helpful knowledge from this presentation.

Good luck!